Critical Thresholds in a Relaxation Model for Traffic Flows

نویسندگان

  • Tong Li
  • Hailiang Liu
چکیده

In this paper, we consider a hyperbolic relaxation system arising from a dynamic continuum traffic flow model. The equilibrium characteristic speed resonates with one characteristic speed of the full relaxation system in this model. Thus the usual sub-characteristic condition only holds marginally. In spite of this obstacle, we prove global in time regularity and finite time singularity formation of solutions simultaneously by showing the critical threshold phenomena associated with the underlying relaxation system. We identify five upper thresholds for finite time singularity in solutions and three lower thresholds for global existence of smooth solutions. The set of initial data leading to global smooth solutions is large, in particular allowing initial velocity of negative slope. Our results show that the shorter the drivers’ responding time to the traffic, the larger the set of initial conditions leading to global smooth solutions which correctly predicts the empirical findings for traffic flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Implicit Numerical Model for Calculation of Sub and Super Critical Flows

A two dimensional numerical model of shallow water equations was developed tocalculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady stateequations were discretized based on control volume method. Collocated grid arrangement was appliedwith a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used fordiscretization of convection and dif...

متن کامل

Development of an Implicit Numerical Model for Calculation of SUB-and Super-Critical Flows

A two dimensional numerical model of shallow water equations was developed to calculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady state equations were discretized based on a control volume method. Collocated grid arrangement was applied with a SIMPLEC like algorithm for depth-velocity coupling. A power law scheme was used for discretization of convection...

متن کامل

Critical Thresholds in Relaxation Systems with Resonance of Characteristic Speeds

In this paper, we consider hyperbolic relaxation systems arising from dynamic continuum traffic flow models including the well-known Payne and Whitham (PW) model. The equilibrium characteristic speed resonates with one characteristic speed of the full relaxation system in many physical scenarios in traffic flow, for which the usual subcharacteristic condition only marginally holds. In spite of ...

متن کامل

Method of Video-Measurements of Traffic Flow Characteristics at a Road Junction

In the theory of traffic flows the main characteristics are: intensity, speed, and density.  They make it possible to use hydrodynamic models. In connection with the development of modern highways and road networks, traffic flows behavior is becoming more and more complex and diverse. In particular, the B.Kerner studies have shown that the laminar solution of hydrodynamic models is poorly corre...

متن کامل

Critical Thresholds in a Relaxation System with Resonance of Characteristic Speeds

We study critical threshold phenomena in a dynamic continuum traffic flow model known as the Payne and Whitham (PW) model. This model is a quasi-linear hyperbolic relaxation system, and when equilibrium velocity is specifically associated with pressure, the equilibrium characteristic speed resonates with one characteristic speed of the full relaxation system. For a scenario of physical interest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007